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Abstract

The Rayleigh beam is a perturbation of the Bernoulli-Euler beam. We
establish convergence of the solution of the Exact Controllability Problem
for the Rayleigh beam to the correspondig solution of the Bernoulli-Euler
beam.The problem of convergence is related to a Singular Perturbation
Problem. The main tool in solving this problem is a weak version of a
lower bound for hyperbolic polynomials.

1 Introduction

Let us recall the Timoshenko equation

ρwtt − Iρwttxx + EIwxxxx +
ρ

K
(Iρwtttt − EIwttxx) = 0

it models the vibrations of an elastic beam, see Russell [12]. The physical con-
stans are ρ ≡ density, EI ≡ flexural rigidity, Iρ ≡ rotary inertia, and K ≡ shear
modulus. When shear effect is neglected we are led to the Rayleigh equation

ρwtt − Iρwttxx + EIwxxxx = 0

If rotary inertia is neglected in the Rayleigh equation we obtain the Bernoulli-
Euler (B-E) equation

ρwtt + EIwxxxx = 0 .

After a change of variables we may write the Rayleigh anb B-E equations in
the form

wtt − Iwttxx + wxxxx = 0

and
wtt + wxxxx = 0 .

We consider the Exact Controllability Problem (ECP) and the method of
solution for these equations as proposed by Littman [7, 8].
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In Moreles [10] we deal with the ECP for the Timoshenko and Rayleigh
equations. Control time is established independent of the shear modulus, and
more importantly, it is shown that the solution of the ECP for the Timoshenko
equation converges strongly to that of Rayleigh when K → +∞.

We may pose the correponding problems for plate equations. For instance,
there are the Mindlin-Timoshenko and Kirchhoff plate equations. These are
generalizations of the Timoshenko an Rayleigh beam equations. It can be seen
that the Mindlin-Timoshenko plate is obtained by uncoupling the Reissner-
Mindlin Plate, see Lagnese [4], Lagnese and Lions [5] and Lagnese, Leugering
and Schmidt [6].

Results on Perturbation Analysis in Control Theory are not new. Our work
was motivated by results in Lagnese & Lions [5]. There, it is shown that solutions
of the Timoshenko beam converge in a weak* topology to those of the Rayleigh
beam, similarly for plates. We also mention the work in Komornik [3] where the
Reissner-Mindlin Plate is studied establishing control in time independent of the
shear modulus K. A similar result follows for the corresponding beam system.
In Moreles [11] we go a step further and besides control in time independent
of K, we establish also strong convergence of the solution of the ECP for the
Mindlin-Timoshenko equation to that of Kirchhoff in several space dimensions,
in particular for plates. This generalizes our earlier result.

In this work we establish the analogue for the Rayleigh and B-E equations.
That is, we establish control in time independent of the rotary inertia and
convergence of the solution of the ECP for the Rayleigh equation to the solution
of the ECP for the Bernoulli-Euler equation. The outline is as follows.

The content of Section 2 is the statement of the main result, the proof is
carried out in the next two sections. In Section 3, using the method of Littman
we solve the ECP for Rayleigh and Bernoulli-Euler equations.

In order to describe the content of the last section, a brief description of the
method will prove useful.

Let L any of the operator involved in the equations above. In Littman’s
method, the solution of the control problem is given in the form

W = wψ(t)− v (1)

Here t0 and t1 with t1 > t0 > 0, depending on L, are chosen appropiately to
define ψ(t) a cut-off function

ψ(t) =

 1 t ≤ t0

0 t ≥ t1

In the decomposition (1) w satisfies L[w] = 0 with Cauchy data in the x-
axis. On the other hand v is of the form v = v+ + v− and satisfies L[v] = f,
f = L[wψ]. Observe that f is supported in the strip t0 ≤ t ≤ t1. The functions
v+ and v− are constructed as solutions of the inhomogeneous Cauchy problems
L[v+] = f, x ≥ 0, L[v−] = f, x ≤ 0, with zero Cauchy data in the t-axis.
Moreover, the support of v+ and v− is compact in t away from t = 0. Since



the method is constructive, it suffices to read off boundary conditions (controls)
that guarantee uniqueness.

For the Rayleigh equation we have a solution for the ECP of the form

W I = uIψ(t)− vI

whereas for the Bernoulli-Euler equation we have

W 0 = u0ψ(t)− v0

In Section 4 we deal with the perturbation problems arising from these de-
compositions. That is, we prove convergence of vI to v0, and of uI to u0.

¿From Littman & Markus [9] we see that the function v0 is solution of an
ill-posed problem. The function is found by taking ψ in a Gevrey class. Hence,
convergence of vI to v0 may be considered a singular perturbation problem. We
remark that for the corresponding perturbation problem for Timoshenko and
Rayleigh equation in Moreles [10], convergence is established by finding energy
type inequalities for a first order hyperbolic system. Although the Rayleigh
operator is hyperbolic with respect to the x-direction, such approach does not
work here. We propose an alternative proof. An important step is deriving a
weak version of the lower bound for hyperbolic polinomials in Hörmander [1].

The proof of convergence of uI to u0 is straightforward, it follows from basic
properties of Fourier Transform and Ordinary Differential Equations.

2 Main Result

Let Ω be a bounded interval in R. Recall that W l
2(Ω) is the Sobolev space of

all functions f ∈ L2(Ω) for which the distributional derivatives ∂k
xf are again

elements of L2(Ω) for k ≤ l . The norm is denoted by ‖f‖l . When Ω = R we
regard W l

2 as Hl and

‖f‖l =
(∫

Λ2l

∣∣∣f̂ ∣∣∣2) 1
2

where f̂ is the Fourier Transform of f and

Λs(ξ) =
(
1 + |ξ|2

) s
2
, s ∈ R

Let Ω = (−1, 1), and

u0 ∈ W8
2 (Ω), u1 ∈ W6

2 (Ω)

Let δ > 0 be given. Extend the Cauchy Data to have compact support in a
δ-neighborhhod of Ω which we call again Ω .
Theorem 1 Let T > 0 be given, and let Q be a bounded interval in R containing
Ω. Then, there exists I0 > 0 sufficiently small such that



(1) there exist solutions W I(x, t) and W 0(x, t) of the Cauchy problems

W I
tt − IW I

ttxx +W I
xxxx = 0 , in Ω× {t ≥ 0} ;

W I(x, 0) = u0(x), W I
t (x, 0) = u1(x) in Ω

and
W 0

tt +W 0
xxxx = 0 , in Ω× {t ≥ 0} ;

W 0(x, 0) = u0(x), W 0
t (x, 0) = u1(x) in Ω

both vanishing in Ω× {t ≥ T}.
(2) W I converges to W 0 when I → 0 in the L∞-norm of bounded subsets of
Q× [0, T ].
(3) there exists T0, 0 < T0 < T, such that W I

t converges to W 0
t when I → 0 in

the L∞-norm of bounded subsets of Q× [0, T0].

Remark. (1) A drawback of this result is the regularity required for the Cauchy
data. This regularity is imposed to be able to prove strong convergence. It will
become apparent that weaker convergence can be established with less regularity
of the Cauchy data. See remarks in Section 4.
(2) To solve the ECP it suffices to read-off boundary conditions (controls) that
make a well posed Initial-Boundary Value Problem. We may mimic the proof
of Theorem 1 and make the appropiate changes to obtain convergence of the
controls as well.

3 Exact Controllability

Let T > 0 be given. Here we establish controllability of both elastic systems
in time T. More precisely, we construct two functions, W I(x, t), W 0(x, t), both
vanishing for t ≥ T, which are solutions of the Cauchy Problems

W I
tt − IW I

ttxx +W I
xxxx = 0

W I(x, 0) = u0(x), W I
t (x, 0) = u1(x)

and
W 0

tt +W 0
xxxx = 0

W 0(x, 0) = u0(x), W 0
t (x, 0) = u1(x)

The construction is not new, we just collect results from several places.



Bernoulli-Euler System
To carry out the first step in Littman’s method we solve the Cauchy problem

w0
tt + w0

xxxx = 0

w0(x, 0) = u0(x), w0
t (x, 0) = u1(x)

The solution is analytic in t, for t > 0, see Littman [8].
For the second step we mimic the proof of Theorem 4 in Littman & Markus

[9]. We use the Gevrey classes, γ2, and γ2 introduced therein.
Let ε, with 0 < ε < T. Let ψ(t) be a cut-off function such that

ψ(t) =

 1 t ≤ t0

0 t ≥ t1

where t0 =
ε

2
and t1 =

3
4
ε. It is necessary to choose ψ ∈ γ2. Define

f0(x, t) = L0[w0ψ]

f0 is supported in the set {
(x, t) ∈ R2 : t0 ≤ t ≤ t1

}
and f0 ∈γ2.

This leads to a solution v0
+ of the Cauchy problem

L0v0
+ = f0

∂j
xv

0
+(0, t) = 0, j = 0, 1, 2, 3

with v0
+ supported in the set{

(x, t) ∈ R2 : t0 ≤ t ≤ t1
}

A similar construction works for v0
−, x ≤ 0.

Finally, the solution of the control problem is given by

W 0 = w0ψ − (v0
+ + v0

−) (2)

To complete the solution of the ECP, we just read off boundary conditions
that ensure uniqueness. Notice that W 0(x, t) coincides with w0(x, t) for |x| ≤ 1
and t < t0.

Rayleigh System
Now consider the Cauchy Problem

wI
tt − IwI

ttxx + wI
xxxx = 0

wI(x, 0) = u0(x), wI
t (x, 0) = u1(x)



It turns out that the solution wI(x, t), (x, t) ∈ R2, is smooth in the set{
t > −

√
I (x+ 1 + δ) , t > 0

}
∩

{
t >

√
I (x− 1− δ) , t > 0

}
which is the subset of the upper half-plane bounded by the interval (−1 −
δ, 1 + δ) in the x−axis, and the characteristic lines t = −

√
I (x+ 1 + δ) , t =√

I (x− 1− δ) .
Indeed, let G(x, t) be the fundamental solution of the Rayleigh operator

LI = ∂2
t − I∂2

t ∂
2
x + ∂4

x

with principal part

LI
4 = −I∂2

t ∂
2
x + ∂4

x = −I∂2
x

(
∂2

t −
1
I
∂2

x

)
Notice the wave operator in LI

4. It follows that the singular support of G is
contained in the cone

Γ0 =
{
(x, t) ∈ R2 : t2 = Ix2, t ≥ 0

}
.

See Corollary 3.1 in Moreles [11]. Thus, in particular G is smooth in the set{
(x, t) ∈ R2 : t2 > Ix2, t > 0

}
.

Since the Cauchy data u0, u1 is supported in the interval −1 − δ ≤ x ≤ 1 + δ
the claim follows.

Let us study the corresponding problem in the x-direction. Following Hörmander
[2], let us associate to the Rayleigh operator the polynomial

P (ξ, τ) = ξ4 − Iτ2ξ2 − τ2

with principal part
P4(ξ, τ) = ξ4 − Iτ2ξ2

Let N = (1, 0). It follows that the roots σ of P4 ((ξ, τ) + σN) = P4(ξ +
iσ, τ) = 0 are real for ξ, τ real. Hence from Theorem 12.4.3 in Hörmander [2]
P4 is hyperbolic with respect to N. On the other hand, it is readily seen that∣∣∣∣ P (ξ + iσ, τ)

P4(ξ + iσ, τ)

∣∣∣∣ ≤ 1 +
2
I

¿From Theorem 12.4.6 in Hörmander [2], we conclude that P is hyperbolic with
respect to N. Moreover, its fundamental solution is supported in the cone{

(x, t) ∈ R2 : t2 ≤ Ix2, t > 0
}
.

Define
f I(x, t) = LI [wIψ],



f I is supported in the set {
(x, t) ∈ R2 : t0 ≤ t ≤ t1

}
Hence, the solution of the Cauchy problem

LIvI
+ = f I

∂j
xv

I
+(0, t) = 0, j = 0, 1, 2, 3

is supported in the set{
(x, t) ∈ R2 : t ≤

√
I x+ t1, x ≥ 0

}
∩

{
(x, t) ∈ R2 : t ≥ −

√
I x+ t0, x ≥ 0

}
.

We require vI
+ ≡ 0 for |x| ≤ 1 and in a neighborhood of t = 0, and t = T.

Because of finite speed of propagation, this holds if I is small enough. More
precisely, we require that

√
I + t1 < ε and −

√
I + t0 > 0, since t0 =

ε

2
and

t1 =
3ε
4
, it suffices to take I such that

I <
ε2

16
.

A similar argument works for x ≤ 0 leading to a function vI
−. The function

W I = wIψ − (vI
+ + vI

+) (3)

solves the control problem with control time T as before. As before, observe

that W I(x, t) coincides with wI(x, t) for |x| ≤ 1 and 0 ≤ t ≤ ε2

4
.

Defining I0 =
ε2

16
we fullfil the initial requirement in Theorem 1. Later, we

shall see that T0 =
ε2

4
is what we need to prove part (3) of Theorem 1.

4 Perturbation Analysis

The decompositions (2) and (3) lead us to two perturbation problems. The
study of these problems is the content of the results below. Consequently, we
have a proof of Theorem 1.

We require convergence of vI
+ to v0

+ and vI
− to v0

− . Since both cases are
similar it suffices to consider convergence of vI

+ to v0
+.

In this section, c denotes a constant independent of the rotary inertia I.

Theorem 2. Let v = vI
+ − v0

+. Then, v satisfies the inhomogeneous Cauchy
problem

vxxxx − Ivttxx + vtt = f

∂j
xv(0, t) = 0, j = 0, 1, 2, 3

(4)



where f = f I − f0 + Iv0
+ttxx. Moreover, with fα(x, t) = e−αxf(x, t), α =

√
3

2
√

2
,

v satisfies

|v(x, t)| ≤ cecx

 x∫
0

∫
|f(y, t)|2 dtdy +

(∫ ∫
|(1 + ∂t) fα(x, t)|2 dxdt

)1/2

(5)

Theorem 3. The solution wI of the Cauchy problem

wI
tt − IwI

ttxx + wI
xxxx = 0

wI(x, 0) = u0(x), wI
t (x, 0) = u1(x)

(6)

satisfies the estimates∥∥∂m
x ∂

n
t w

I(·, t)
∥∥ ≤ ‖u0‖m+2n + ‖u1‖m+2(n−1) (7)∣∣∂m

x ∂
n
t w

I(x, t)
∣∣ ≤ ‖u0‖m+2n+1 + ‖u1‖m+2n−1

Theorem 4. The solution w0 of the Cauchy problem

w0
tt + w0

xxxx = 0

w0(x, 0) = u0(x), w0
t (x, 0) = u1(x)

satisfies ∥∥∂m
x ∂

n
t w

0(·, t)
∥∥ ≤ ‖u0‖m+2n + ‖u1‖m+2(n−1) (8)∣∣∂m

x ∂
n
t w

0(x, t)
∣∣ ≤ ‖u0‖m+2n+1 + ‖u1‖m+2n−1 (9)

As a consequence of these results, we may derive the estimates∥∥∂n
t

(
wI(·, t)− w0(·, t)

)∥∥ ≤ I (1 + t)
(
‖u0‖5+n + ‖u1‖3+n

)
(10)

∣∣∂n
t

(
wI(x, t)− w0(x, t)

)∣∣ ≤ I (1 + t)
(
‖u0‖6+n + ‖u1‖4+n

)
(11)

for n = 0, 1, 2.

Before proving these theorems, let us establish the main result. From the
exspressions

W I = wIψ − (vI
+ + vI

−)

W 0 = w0ψ − (v0
+ + v0

−)



we have that∣∣W I(x, t)−W 0(x, t)
∣∣ ≤ |ψ(t)|

∣∣wI(x, t)− w0(x, t)
∣∣ +∣∣vI

+(x, t)− v0
+(x, t)

∣∣ +
∣∣vI
−(·, t)− v0

−(·, t)
∣∣

but from (11) ∣∣wI(x, t)− w0(x, t)
∣∣ ≤ I (1 + t) (‖u0‖6 + ‖u1‖4)

and from (5)∣∣vI
+(x, t)− v0

+(x, t)
∣∣ ≤ cecx

(
x∫
0

∫
|f(y, t)|2 dtdy +

(∫ ∫
|(1 + ∂t) fα(x, t)|2 dxdt

)1/2
)

Similarly for
∣∣vI
−(x, t)− v0

−(x, t)
∣∣ .

Recall that

f = 2ψt

(
wI

t − w0
t

)
+ ψtt

(
wI − w0

)
− I

(
2wI

xxtψt + wI
xxψtt

)
+ Iv0

+ttxx

but from the estimates (7), (8), (10) and the fact that ψ(t) is compactly sup-
ported we have

x∫
0

∫
|f(y, t)|2 dtdy ≤ cI (‖u0‖6 + ‖u1‖4)

We may apply the same argumemnt to ∂tfα to obtain(∫ ∫
|(1 + ∂t) fα(x, t)|2 dxdt

)1/2

≤ cI (‖u0‖8 + ‖u1‖6)

Summarizing∣∣W I(x, t)−W 0(x, t)
∣∣ ≤ cI(1 + t)ecx (‖u0‖8 + ‖u1‖6) .

Recall that W I(x, t) coincides with wI(x, t) for |x| ≤ 1 and 0 ≤ t ≤ T0.
Thus, the last assertion in Theorem 1 follows from (11). Hence, The proof is
complete.

Remark. Due to Littman’method we require boundary controls in the whole
boundary. It will be of interest to establish a similar result for clamped beams.
By the work of Littman & Markus [9] it suffices to solve the ECP for the clamped
Rayleigh beam and prove the analogue to theorems 3 and 4. Theorem 2 will
apply.



Singular Perturbation
Here we prove Therorem 2. In this paragraph, any Fourier Transform is

denoted with capital letters, that is, if a function h(x, t) is given, we denote

H(x, τ) = Ft[h(x, ·)](τ)

H(ξ, τ) = F [h](ξ, τ)

Recall the polynomial

P (ξ, τ) = ξ4 − Iτ2ξ2 − τ2

Denote Dx = −i∂x, and Dt = −i∂t. Since P (Dx, Dt) is hyperbolic with
respect to N = (1, 0) there exists σ0 > 0 such that

P (ξ − iσ, τ) 6= 0, (ξ, τ) ∈ R2, σ > σ0 .

It will become apparent that necessarily σ0 ≥
1√
I
.

¿From Hormander [1] we have for some positive numbers c, µ that

|P (ξ − iσ, τ)| ≥ c

(
1 +

(
|ξ|2 + |τ |2 + |σ|2

)1/2
)−µ

, (ξ, τ) ∈ R2 (12)

Our proof is based on a similar estimate, but independent of I.
Consider the Cauchy problem (4). Since f, and v in (4) are compactly sup-

ported in t, we may perform Fourier Transform with respect to t to obtain

Vxxxx + Iτ2Vxx − τ2V = F

∂j
xV (0, τ) = 0, j = 0, 1, 2, 3

We seek V = eσxG, σ > 0. Then G satisfies

P (Dx − iσ, τ)G = e−σxF

Let Fσ = e−σxF. Fourier Transform with respect to x is permitted obtaining

P (ξ − iσ, τ)G = Fσ (13)

As remarked before, if σ0 =
1√
I
, it is possible to solve for G if σ >

1√
I
.

However, we need to solve for G even if this condition does not hold. To do so,
we now derive a weaker version of (12).

Let z = ξ − iσ. The roots of the polynomial P (z, τ) = 0 are

z1 = − 1√
2

√
Iτ2 +

√
I2τ4 + 4τ2

z2 = z1

z3 = −i 1√
2

√√
I2τ4 + 4τ2 − Iτ2

z4 = −z3



Then
P (ξ − iσ, τ) = (ξ − iσ − z1) (ξ − iσ − z2) ·

· (ξ − iσ − z3) (ξ − iσ − z4)

Since

|(ξ − iσ − z1) (ξ − iσ − z2)| ≥ σ

(
σ + |ξ|+ 1√

2

√
Iτ2 +

√
I2τ4 + 4τ2

)
and

|(ξ − iσ − z3) (ξ − iσ − z4)| ≥
(
σ + |ξ|+ 1√

2

√√
I2τ4 + 4τ2 − Iτ2

)
·

·
(
|ξ|+

∣∣∣∣σ − 1√
2

√√
I2τ4 + 4τ2 − Iτ2

∣∣∣∣)
we have

|P (ξ − iσ, τ)| ≥ σ

(
σ + |ξ|+ 1√

2

√
Iτ2 +

√
I2τ4 + 4τ2

)
·

·
(
σ + |ξ|+ 1√

2

√√
I2τ4 + 4τ2 − Iτ2

)
·

·
(
|ξ|+

∣∣∣∣σ − 1√
2

√√
I2τ4 + 4τ2 − Iτ2

∣∣∣∣)

It is readily seen that the function
1√
2

√√
I2τ4 + 4τ2 − Iτ2 is increasing in

|τ | and converges to
1√
I

when |τ | → +∞.

Fix Ia with 0 < Ia << 1. Choose σ =
1

4
√
Ia
. It follows at once that

1√
2

√√
I2τ4 + 4τ2 − Iτ2 ≥ 2σ

for |τ | ≥ 1
2
√

3Ia
and 0 < I < Ia.

Hence, we have the lower bound

|P (ξ − iσ, τ)| ≥ cσ
(
σ + |ξ|+

√
I |τ |+ |τ |1/2

)
(σ + |ξ|)2 (14)

for |τ | ≥ 1
2
√

3Ia
and 0 < I < Ia.

We proceed to estimate V (x, τ). Consider first the case |τ | ≥ 1. This corre-

sponds to Ia =
1

2
√

3
, and σ =

√
3

2
√

2
. This is our α in Theorem 2.



Denote Fα = e−αxF. With these restrictions we have the next bound inde-
pendent of I

|P (ξ − iα, τ)| ≥ c
(
1 + |τ |1/2

)
(1 + |ξ|)3 , ξ ∈ R, |τ | ≥ 1 (15)

Now we may solve for G in (13)

G =
Fα

P (ξ − iα, τ)

and by inverse Fourier Transform

G(x, τ) =
1
2π

∫
eixξFα(ξ, τ)
P (ξ − iα, τ)

dξ

which satisfies

|G(x, τ)| ≤ c

∫
|Fα(ξ, τ)|(

1 + |τ |1/2
)

(1 + |ξ|)3
dξ

thus

|V (x, τ)| ≤ ceαx

∫
|Fα(ξ, τ)|(

1 + |τ |1/2
)

(1 + |ξ|)3
dξ (16)

Let us consider the case |τ | ≤ 1. After the change of variables

V1 = V, V2 = Vx, V3 = Vxx, V4 = Vxxx

in (4) we obtain the system

V1x = V2

V2x = V3

V3x = V4

V4x = τ2V1 − Iτ2V3 + F

with zero initial data.

Let
−→
V = (V1, V2, V3, V4), then

d

dx

(∣∣∣−→V ∣∣∣2) = 2V1V2 + 2V2V3 + 2V3V4 + 2τ2V1V4 − 2Iτ2V3V4 + FV4

Using the fact that I < 1 and |τ | ≤ 1 we obtain

d

dx

(∣∣∣−→V ∣∣∣2) ≤ c
∣∣∣−→V ∣∣∣2 + F 2



and ∣∣∣−→V (x, τ)
∣∣∣2 ≤ ecx

x∫
0

|F (y, τ)|2 dy (17)

Now we apply both estimates to

v(x, t) =
1
2π

∫
eiτtV (x, τ)dτ .

Let us write

v(x, t) =
1
2π

∫
|τ |≤1

eiτtV (x, τ)dτ +
∫
|τ |≥1

eiτteαxG(x, τ)dτ

v(x, t) ≡ 1
2π

∫
|τ |≤1

J1dτ +
∫
|τ |≥1

J2dτ .

¿From (17)

|J1| ≤ ecx

x∫
0

|F (y, τ)|2 dy

On the other hand, (16), implies

|J2| ≤ ceαx

∫
|Fα(ξ, τ)|(

1 + |τ |1/2
)

(1 + |ξ|)3
dξ

that is
|v(x, t)| ≤ 1

2π

∫
|τ |≤1

ecx
x∫
0

|F (y, τ)|2 dydτ+

∫
|τ |≥1

ceαx
∫ |Fα(ξ, τ)|(

1 + |τ |1/2
)

(1 + |ξ|)3
dξdτ

or

|v(x, t)| ≤ cecx

(∫
|τ |≤1

x∫
0

|F (y, τ)|2 dydτ +

∫
|τ |≥1

∫ |Fα(ξ, τ)|(
1 + |τ |1/2

)
(1 + |ξ|)3

dξdτ


Applying Plancherel Theorem in the first term of the right hand side and

Hölder Inequality in the second we have

|v(x, t)| ≤ cecx

 x∫
0

∫
|f(y, t)|2 dtdy +

(∫ ∫ (
1 + |τ |2

)
|Fα(ξ, τ)|2 dξdτ

)1/2




Again by Plancherel Theorem, it follows that

|v(x, t)| ≤ cecx

x∫
0

∫
|f(y, t)|2 dtdy +

(∫ ∫
|(1 + ∂t) fα(x, t)|2 dxdt

)1/2

(18)

and the proof of Theorem 2 is complete.

Remark. Notice that instead of (15) we could derive from (14) the estimate

|P (ξ − iα, τ)| ≥ c
√
I (1 + |τ |) (1 + |ξ|)3 , ξ ∈ R, |τ | ≥ 1

This lead us to require less regularity from the Cauchy data u0, u1, but implying
weaker convergence in Theorem 1. The analogue for (18) will be I dependent.



Regular Perturbation
Here we carry out the proof of theorems 3 and 4. The proof is straight-

forward, we just perform Fourier Transform with respect to x and solve the
resulting second order equations explicitly.

After Fourier Transform with respect to x in (6) we have(
1 + Iξ2

)
ŵI

tt + ξ4ŵI = 0

ŵI(ξ, 0) = û0(ξ), ŵI
t (ξ, 0) = û1(ξ)

with solution

ŵI(ξ, t) = û0(ξ) cosλ(ξ)t+ û1(ξ)
sinλ(ξ)t
λ(ξ)

where

λ(ξ) =
ξ2√

1 + Iξ2
(19)

easily ∣∣∣∂n
t ŵ

I(ξ, t)
∣∣∣ ≤ |λ(ξ)nû0(ξ)|+

∣∣λ(ξ)n−1û1(ξ)
∣∣ (20)

We prefer a bound independent of I, to do so we require more regularity for
the Cauchy Data. We obtain∣∣∣∂n

t ŵ
I(ξ, t)

∣∣∣ ≤ ∣∣ξ2nû0(ξ)
∣∣ +

∣∣∣ξ2(n−1)û1(ξ)
∣∣∣ (21)

Similarly we apply Fourier transform with respect to x in the B-E problem
to obtain

ŵ0
tt + ξ4ŵ0 = 0

ŵ0(ξ, 0) = û0(ξ), ŵ0
t (ξ, 0) = û1(ξ)

whose solution is

ŵ0(ξ, t) = û0(ξ) cos ξ2t+ û1(ξ)
sin ξ2t
ξ2

with estimates ∣∣∣∂n
t ŵ

0(ξ, t)
∣∣∣ ≤ ∣∣ξ2nû0(ξ)

∣∣ +
∣∣∣ξ2(n−1)û1(ξ)

∣∣∣
For the difference we have the estimates∣∣wI(ξ, t)− w0(ξ, t)

∣∣ ≤ It
(∣∣∣(1 + |ξ|)5 û0(ξ)

∣∣∣ +
∣∣∣(1 + |ξ|)3 û1(ξ)

∣∣∣)
∣∣wI

t (ξ, t)− w0
t (ξ, t)

∣∣ ≤ It
(∣∣∣(1 + |ξ|)6 û0(ξ)

∣∣∣ +
∣∣∣(1 + |ξ|)4 û1(ξ)

∣∣∣)



∣∣wI
tt(ξ, t)− w0

tt(ξ, t)
∣∣ ≤ I (1 + t)

(∣∣∣(1 + |ξ|)7 û0(ξ)
∣∣∣ +

∣∣∣(1 + |ξ|)5 û1(ξ)
∣∣∣)

Remark. Estimate (21) is independent of I. ¿From (19) and (20), we have
again an alternative estimate dependent on I, namely

∣∣∣∂n
t ŵ

I(ξ, t)
∣∣∣ ≤

∣∣∣∣∣∣ 1(√
I
)n (1 + |ξ|)nû0(ξ)

∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
1(√
I
)n−1 (1 + |ξ|)n−1û1(ξ)

∣∣∣∣∣∣∣
with the same conclusion as the remark above.
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